
Towards Modelling and Verification of Coupler
Behaviour in Climate Models

Chinmayi Baramashetru
c.baramashetru@kent.ac.uk

University of Kent
UK

Dominic Orchard
dominic.orchard@cl.cam.ac.uk

University of Cambridge
University of Kent

UK

Abstract
Climate models and earth system models often comprise
submodels composed via a ‘coupler’, a software component
that enables interaction between submodel components. The
continuous exchange of data through couplers creates the
risk of subtle errors propagating across components, poten-
tially distorting scientific conclusions. In this paper, we argue
for lightweight formal verification techniques applied at the
coupler interface to improve both coupler and model cor-
rectness. By enforcing formal contracts on data exchanges,
the coupler can act as a checkpoint that detects and prevents
certain classes of component-level errors before they propa-
gate between models. We abstract general design principles
for couplers and propose verifiable subsystems. Using an
example of a real-world bug, we illustrate a hybrid verifica-
tion strategy that integrates module-level contracts, verified
through both static and runtime techniques. We aim to offer
a practical pathway for both existing and future couplers, ul-
timately enabling auditable and formally verifiable couplers.

CCS Concepts: • Software and its engineering→ Soft-
ware verification and validation; • Computing method-
ologies→Modeling and simulation; • Applied comput-
ing→ Earth and atmospheric sciences.

Keywords: Climate Models, Formal Methods, Couplers, Ver-
ification

ACM Reference Format:
Chinmayi Baramashetru and Dominic Orchard. 2025. Towards
Modelling and Verification of Coupler Behaviour in Climate Mod-
els. In Proceedings of the 2nd ACM SIGPLAN International Work-
shop on Programming for the Planet (PROPL ’25), October 12–18,
2025, Singapore, Singapore. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3759536.3763801

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PROPL ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2161-8/2025/10
https://doi.org/10.1145/3759536.3763801

1 Introduction
At the heart of efforts to understand our changing climate are
climate models—large computational artefacts synthesising
centuries of scientific understanding into multi-million line
programs from which myriad potential future climatologi-
cal scenarios are calculated. Like other large-scale software
projects built by many people over decades, these models
face significant engineering challenges. Whilst validation is
often at the forefront of the scientific developer’s mind (i.e.,
whether the model accurately represents the Earth system),
verification remains a challenge (i.e., whether the program
correctly implements the intended model) [22]. In safety-
critical domains, formal verification is widely used, yet it is
rare in climate modelling. Often, validation acts as a proxy
for verification: if a model reproduces past climates or passes
particular scientific ‘benchmark’ tests with acceptable error,
then it is considered ‘correct enough’. But when a model fails
to produce expected results it is often unclear whether this
is due to a failure of validity or verification [23]. In this work,
we study large-scale climate models and consider whether
there are inherent structural aspects that provide a fulcrum
against which to lever formal verification techniques to aid
modelling efforts by speeding up development, easing main-
tenance, and increasing trust. Ensuring coupler correctness
is not an isolated concern; weak coupler guarantees can
mask or propagate errors in component models, undermin-
ing the correctness of the entire coupled system. The models
we consider are those used in the World Climate Research
Programme’s Coupled Model Intercomparison Project, which
is a key data source for the Intergovernmental Panel on Cli-
mate Change (IPCC) reports. Such models split into General
Circulation Models (GCMs) focused on the atmosphere and
oceans, and Earth SystemModels (ESMs) which extend GCMs
with models of the biosphere and/or cryosphere (e.g., sea
ice, glaciers). Both types are often called ‘coupled models’
since they combine multiple models, usually the ocean and
atmosphere at their core. This coupling not only connects
two components but also models a real physical boundary
between physical systems. From a programming perspective,
coupling resembles function composition. However, ocean
and atmosphere components typically differ in temporal
and spatial resolutions, software architectures, and paralleli-
sation strategies. Thus, independent pieces of software, or

https://orcid.org/0000-0001-5344-0032
https://orcid.org/0000-0002-7058-7842
https://doi.org/10.1145/3759536.3763801
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759536.3763801


PROPL ’25, October 12–18, 2025, Singapore, Singapore Chinmayi Baramashetru and Dominic Orchard

Land Model
(H-TESSEL)

OASIS3 Coupler
(Data Transfer Only)

Ocean Model
(NEMO)

Output Field Input Field

Figure 1. Coupling structure in EC-Earth 3.1

libraries, called couplers are used to mediate between compo-
nents, handling the field exchange and storage, grid remap-
ping and interpolation, and time synchronisation. These
couplers are complex, loosely specified orchestration layers.
This lack of clear specification poses challenges for verify-
ing correctness, reproducibility, and long-term maintenance,
especially as models scale and run on heterogeneous hard-
ware. Fortunately, couplers are often widely shared across
models and research groups. Many of the 133 contributing
models (and model configurations) in the 6th iteration of the
Coupled Model Intercomparison Project (CMIP6 in 2021-22)
use common coupler frameworks. This shared use makes
couplers a high-impact target for verification that can have
a large multiplicative effect.

We identify a set of key principles and components of cou-
plers through a verification lens with the hope of shoring
up the foundations of existing couplers and coupled models,
and providing a route to future verified coupler efforts. This
paper reports our initial analysis and outlines potential ver-
ification techniques, aiming to bridge the gap between the
verification and climate modelling communities.

2 Coupled Models and Couplers
Software architecture has mainly focused on component-
based software engineering to support modularity, maintain-
ability, and reusability in complex systems [29]. Couplers (as
introduced above) enable a component-based approach to
climate modelling, reflecting different physical systems and
different subdisciplines in model components (‘submodels’).
There has been growing interest in analysing the role and
effect of coupler architectures on the scientific output of
Earth System Models [2, 11]. The architectural patterns of
various models reveal that couplers play a significant role
in determining how tightly or loosely components are in-
tegrated, influencing the ease of adding new components
and the fidelity of the simulated physical processes [2]. The
choice of coupler logic can subtly alter climate feedbacks
or introduce numerical biases, potentially affecting climate
projections and scientific conclusions [20].
We examined commonly used couplers such as OASIS3-

MCT [30, 31], CPL7 [10], and ESMF (the Earth System Mod-
elling Framework) [14], identifying common core tasks, in-
cluding: 1) transforming and regridding fields1 between com-
ponents, 2) managing data exchange and storage, 3) syn-
chronising time steps across components with different time
1In earth sciences, a ’field’ is a function over space (and sometimes also time)
representing a physical quantity. Numerical models approximate fields on a
finite grid, i.e., as arrays of scalars indexed by co-ordinates in space/time.

intervals, and 4) ensuring conservation of key physical quan-
tities for physical consistency across components. Software
errors in these coupler tasks, or in the model code surround-
ing coupling, can lead to subtle inconsistencies that may
go unnoticed during standard testing and have unexpected
effects on scientific results. The following illustrates how
a lack of rigorous interface-level validation in a real-world
model led to significant divergence in simulation outputs.

Example 2.1. In the EC-Earth3 ESM 3.1 model [12], fresh-
water runoff generated by the land model (H-TESSEL) is
transferred to the ocean model (NEMO) via the OASIS3 cou-
pler, illustrated in Figure 1. The coupler is responsible for
spatial interpolation and routing fields between model com-
ponents. Here, the OASIS coupler sends the runoff field from
the landmodel to the ocean, but does not validate how it is re-
ceived or how it is used by the ocean model. Massonnet et al.
attempted to replicate this model by running ensemble sim-
ulations on two different HPC systems, showing significant
differences in the ocean outputs [20]; the coupled model was
sensitive to the change in computing platform. The diver-
gence was traced to NEMOwhere a Fortran array in NEMO’s
runoff routine was not declared in the routine header, lead-
ing compilers to pre-fill it with different defaults. This meant
that some elements of the receiving buffer retained arbitrary
memory values unless overwritten. On one platform, the
uninitialised entries appeared as zeros; on another, they ap-
peared as NaNs. When combined with the valid runoff data,
these spurious values entered the ocean surface, breaking
ocean dynamics.

Although the root bug was in NEMO, the coupler played a
role by transmitting to the field without checking its validity,
allowing corrupted values to enter the coupled system unno-
ticed. Standard tests, such as bitwise comparison on a single
platform or ensemble statistics, failed to detect the bug since
the memory behaviour was consistent within one environ-
ment. The error only appeared across compilers. We argue
that this bug could have been detected if the coupler had
enforced explicit interface contracts, independent of com-
piler defaults. Contracts that require arrays to be initialised
and to lie within physically valid bounds can detect invalid
entries, such as negative values, NaNs, or values exceeding a
maximum threshold. Similarly, postconditions that check for
all-zero fields, or impose a tolerance condition on the total
flux, can ensure that an array is not considered valid when it
has been zero-filled by the allocator but not overwritten by
the sender. In addition, conservation contracts can enforce
that the total runoff transmitted by the land model equals



Towards Modelling and Verification of Coupler Behaviour in Climate Models PROPL ’25, October 12–18, 2025, Singapore, Singapore

(within some specified tolerance) the total received by the
ocean model thereby catching cases where arrays are only
partially updated. In EC-Earth3.2, OASIS3 was replaced by
OASIS-MCT which includes additional checks on data. This
highlighted the bug in NEMO, enabling it to be fixed by the
developers. We thus advocate for more such checks but in
a contract-based verification approach, providing a more
systematic way to ensure correctness and consistency across
model exchanges. This example strengthens the argument
that coupler interface verification improves not only the
coupler’s robustness but also overall model correctness.

3 Towards Verifiable Coupler Design
Formal verification offers mathematically rigorous methods
to ensure that software behaves as specified, catching er-
rors beyond traditional testing [24]. The Design by Contract
(DBC) [21] approach bounds software components by con-
tracts that precisely define their expected behaviour through
preconditions, postconditions, and invariants. Such formal
contracts enable both static and runtime verification.

We bring this paradigm of verification to bear on the prob-
lem of coupler verification. In Section 3.1, we analyse a range
of widely used, legacy, and modern couplers to identify their
common core functional modules, refining the main cate-
gories of tasks identified in Section 2. Section 3.2 outlines
key principles for a general coupler design, describes the role
of each module and proposes an informal interface contract
for each module in terms of preconditions, postconditions,
and invariants. Finally, Section 3.3 gives a concrete instance
of this approach, using the ACSL modelling language and a
hybrid verification approach.

3.1 Major Couplers in Earth System Models
The OASIS family of couplers [8, 30, 32] is widely used in
European climate models. OASIS3 is a configuration-driven
coupler that exchanges two-dimensional fields between com-
ponents. OASIS4 generalised the coupler to support three-
dimensional fields and parallel communication, using a cen-
tral server process to exchange data among multiple com-
ponents. In contrast, OASIS-MCT (OASIS using the Model
Coupling Toolkit, discussed further below) no longer runs as
a separate central process; instead, each component model
is linked directly to the coupler as a library. Through its
API, the coupler provides functions for model initialisation,
grid registration and remapping, and field declaration and
transfer. Data exchanges between components are carried
out in parallel using the Message Passing Interface (MPI).
All coupling behaviour is externally configured. Key subsys-
tems of the coupler include a field register, grid manager,
interpolator, time manager, and a communication scheduler.
The Earth System Modeling Framework (ESMF) [14], de-

veloped by NASA, provides a component-based architec-
ture with standardised interfaces. Each ESMF component

has a standardised interface of methods (initialise, run, and
finalise). ESMF allows components to be composed hierarchi-
cally, enabling a scalable architecture. Data is encapsulated
and passed via a data structure containing arrays and numeri-
cal fields. ESMF’s infrastructure layer includes field registries,
grid classes (flexible subtypes for different physical grids),
I/O classes for fields and grids, timemanagement, and unified
error handling. Its strong emphasis on formal interfaces re-
sembles a lightweight Design-By-Contract approach where
each component must provide specific fields at an agreed
time and implement initialisation and finalisation methods.
The Model Coupling Toolkit (MCT) [17] is a lower-level

library that has been integrated into frameworks such as
OASIS, CPL6 and CPL7. The library provides essential func-
tions such as data transfer and interpolation, but relies on
higher-level frameworks for tasks like time synchronisation,
metadata management, and initialisation.
CPL6 and CPL7 couplers developed at the US National

Centre for Atmospheric Research (NCAR), as a community
couplers [9, 10], connect all components to a single coupler
component. Both CPL6 and CPL7 use MCT for data transfer
and data interpolation. In CPL6, components call the coupler
API directly, whereas in CPL7, it’s built as a single executable
with a single high-level driver– the main program that drives
the overall execution sequence of all component models.
The key subsystems in CPL6/7 include a grid module, with
optional interpolation, initialisation, and time management
with driver clocks and coupling frequency.

Other notable examples include the community couplers
C-Coupler1 [18] and C-Coupler2 [19], which provide uni-
form runtime environments with similar modular subsys-
tems to those already described.

Across all the couplers listed above, despite differences in
their implementations, architectures and coupling strategies,
a general set of core functional modules can be abstracted.
The design principles for such modules provide a foundation
for language-agnostic, modular coupler logic. This enables
module-level contracts and verification strategies that can
be systematically applied across different coupler implemen-
tations, which we exemplify in Section 3.3.

3.2 Coupler Subsystems and Functional Modules
We identify core functional modules of couplers and propose
requirement specifications as potential preconditions, post-
conditions, and invariants as module-level contracts.

Configuration and Initialisation Module: parses exter-
nal configuration or API input. For example, namcouple in
OASIS3, which is a plain-text configuration file listing all
fields, grids, interpolation methods, exchange frequency, and
transformations. In ESMF, coupling parameters are speci-
fied through XML metadata and code-based settings. These
configurations define which components are coupled, the
frequency of data exchange, and the initialisation of internal



PROPL ’25, October 12–18, 2025, Singapore, Singapore Chinmayi Baramashetru and Dominic Orchard

data structures. Similar configuration modules exist in other
couplers, such as OASIS-MCT, C-Coupler, and CPL7.

Precondition: Configuration files or API calls must specify
all coupling data, e.g., every field has a defined source and
target, and each component must have grid information.
Postcondition: Each coupling component is defined, and

the model explicitly specifies which fields it exchanges with
other components. Supporting data structures, such as field
registries and grid mappings, are also created at this stage.

Invariants: Every registered field must have a source, tar-
get, and unique identifier with no duplication.

Field Register and Metadata Module: manages individual
coupling fields—in Earth sciences, a field refers to a physical
quantity (e.g., temperature, salinity, runoff) represented as a
function over space and sometimes time, which numerical
models approximate as arrays of values on a grid. Each field
is registered for exchange along with metadata such as unit,
grid, and datatype. During initialisation, each component
uses API calls to declare the fields it will send or receive. The
coupler compiles these into a global registry that specifies,
for each field, its source, target, mapping, and communi-
cation pattern. This registry acts as the implicit contract
between components specifying their coupling behaviour.
Precondition: Components must declare fields together

with the required metadata, including the field name, asso-
ciated grid, data type, and whether the field is to be sent or
received.
Postcondition: The coupler registry contains an entry for

each coupler field with references or pointers to source and
target components, field dimensions, and coupling timestep.
For instance, after registration in ESMF, a field is part of
the coupling contract, the coupler connector will expect the
source to provide it and the target to accept it.

Invariants: Each field must have a unique identifier, every
required field has a corresponding provider field, i.e., no dan-
gling fields, and the grid size is immutable once the run starts.

Grid Manager and Interpolation Module: defines the grid
for every component, generates interpolation weights and
remaps the data from the source grid field to the target grid
field. In some couplers, weight generation is offline (precom-
puted), while others compute weights in the initialisation
module (see above).
Precondition: Each component grid must be defined and

known to the coupler. Source and target grids for every
exchange must be available and compatible with the inter-
polation method. Preconditions depend on the interpolation
method, e.g., if using a conservative method, grid definitions
must be available. Some couplers generate weights at run-
time, which may need runtime assertion checks as contracts.
Postcondition: For every required source-target grid pair

in the coupling, a mapping operator is defined, such as a
sparse matrix in MCT or an analytical transformation. Given

the source field and interpolation method, the coupler can
produce the correct interpolated field on the target grid.

Invariants: If a conservation scheme is used, then the sum
or integral of the field is conserved within the specified
tolerance. The interpolation scheme should be consistent,
ensuring a fixed mapping from source to target, unless the
coupler supports an adaptive mesh strategy, which no main-
stream couplers fully support currently.

Time Synchronisation Module: coordinates the coupling
schedule between components and triggers data exchanges
at defined intervals. In couplers with a single executable
design, such as CPL7 and ESMF, the time advancement is
handled by a central loop often called a ‘coupler driver loop’,
which manages all component execution and data exchanges.
In a multi-executable setup (e.g., OASIS) components syn-
chronise their local time and data exchanges using explicit
interface calls to the coupler.
Precondition: Each component has declared the coupling

interval through a configuration file or time management in-
terface. Clock or calendar conventions between components
should be compatible.

Postcondition: At each step, the source produces data and
the target consumes it at time t. A time manager enforces a
synchronisation barrier so no component advances past t
until the exchange completes. The corresponding precondi-
tion is simply that all components have reached time t.

Invariants: The time module must ensure that the simula-
tion time never goes backwards. The coupler should not al-
low an exchange at time t2 before the exchange at an earlier
time t1 (with t1 < t2). No coupling event should be dupli-
cated or missed. The time module must ensure consistency
between components, e.g., if two components exchange data
every 3 hours, they should have the same clock-integration
point (one cannot send every 3 hours while the other does it
hourly); the time module must ensure consistent exchange
intervals throughout.

Data Transfer and Routing Module: handles the actual
sending and receiving of data fields between components.
This module defines the communication patterns (MPI or
shared memory) to exchange data fields. In a parallel routing
context, the module uses various strategies such as MCT’s
router, OASIS3’s gather-scatter approach, or intermediate
grouping by exchanging via exchange grids to route the data.
Precondition: Before exchanging, the source component

has valid data and the target component must be allocated
and ready to accept data. The time synchronisation module
has confirmed a valid coupling step, and the data field di-
mensions match those of the target.
Postcondition: Target fields are filled with data, and the

target matches the source field or is transformed, following
the postcondition of the interpolation module. For instance,
in OASIS-MCT, a call to exchange data from an atmosphere



Towards Modelling and Verification of Coupler Behaviour in Climate Models PROPL ’25, October 12–18, 2025, Singapore, Singapore

field to an ocean field results in the ocean receiving the at-
mosphere field, interpolated to the ocean’s grid.
3.3 Example Formal Specification
In a deductive verification approach, formal specifications
generate proof obligations that must hold for all possible
executions. Several tools support deductive verification such
as KeY [1] for Java using JML, SPARK [4] for Ada and Frama-
C [16] for C using the ANSI/ISO C Specification Language
(ACSL). Unfortunately, Fortran, the dominant language for
climate models, has no such deductive tool (other than a
small prototype in the CamFort tool [7]). We thus consider
interoperating with Fortran code as a black box. However,
postconditions involving native Fortran code cannot be veri-
fied statically because the verifier cannot symbolically anal-
yse external compiled modules. Instead, we consider run-
time verification. Runtime checks are similar to testing but
driven by formal specifications, providing evidence of con-
tract violations at runtime. Similar approaches have been
successfully explored in safety-critical and high-assurance
systems [5, 13]. This provides a balanced strategy for large,
legacy scientific systems where full source-level verifica-
tion is challenging. Although most climate models are pri-
marily written in Fortran, C serves as the interoperability
layer in high-performance scientific codes. Fortran codes
routinely expose or call C bindings via the Fortran standard
ISO_C_BINDING interface, and many core libraries in cli-
mate models (e.g., MPI, NetCDF) are themselves C-based.
Hence, we leverage Frama-C, using the WP plugin for static
verification and runtime assertion checking via the E-ACSL
plugin [27]. ACSL contracts allow us to specify a high-level
interface guarantees for coupler modules directly at the C
layer, ensuring that verification integrates naturally with
existing Fortran-to-C workflows.
ACSL contracts use various clauses to specify function

behaviour. Preconditions (requires) describe the conditions
that must hold when the function is called, while postcondi-
tions (ensures) describe the guarantees that must hold when
the function terminates. A minimal schematic example is
shown below:

/*@ requires P;

ensures Q; */

return_type f(param_type ...);

Listing 1. Minimal ACSL function contract with requires
and ensures clauses

Here, 𝑃 and 𝑄 are logical predicates. In practice, these are
expressed with built-in ACSL primitives such as asserting
that a pointer is readable (\valid_read(p)), asserting that a
pointer refers to allocated memory (\valid(p)), or referring
to the return value (\result). The clause assigns specifies
exactly which memory locations a function may modify,
making data dependencies explicit and preventing hidden
side effects. More complex user-defined predicates, such as

/*@ predicate bounds{L}(const double *a, integer n, real M)=

\forall integer i; 0 <= i < n ==> 0.0 <= a[i] <= M; @*/

/*@ predicate not_all_zero{L}(const double *a, integer n) =

\exists integer i; 0 <= i < n && a[i] > 0.0; @*/

/*@ global invariant src_pos: SourceGrid > 0;

global invariant tgt_pos: TargetGrid > 0;

global invariant max_pos: MAX_VALUE >= 0.0; @*/

/*@ requires n == SourceGrid;

requires \valid_read(field + (0 .. n-1));

requires bounds(field, n, MAX_VALUE);

requires m == TargetGrid;

requires \valid(out + (0 .. m-1));

assigns out[0..m-1] \from field[0..n-1], n, m,

↩→ MAX_VALUE;

ensures bounds(out, m, MAX_VALUE);

ensures not_all_zero(out, m); */

void remap_field(const double *field, int n, double *out,

↩→ int m) { /* abstract model for remapping */ }

/*@ requires m == TargetGrid;

requires \valid_read(remapped + (0 .. m-1));

requires bounds(remapped, m, MAX_VALUE);

requires \valid(routed + (0 .. m-1));

assigns routed[0..m-1] \from remapped[0..m-1], m;

ensures bounds(routed, m, MAX_VALUE);

ensures not_all_zero(routed, m); */

void route_field(const double *remapped, int m, double

↩→ *routed) { /* abstract model for routing */ }

Listing 2. Conceptual CouplerAdapter modules with ACSL

value ranges or conservation properties, can also be speci-
fied in the same way. In ACSL, a global invariant applies to
specified global variables.

Our approach focuses on verifying core couplermodules at
the interface level, rather than the numerical or physical ker-
nels. We return to example 2.1 to showcase a contract-based
verification strategy using ACSL specifications in Frama-
C and the E-ACSL runtime verification framework. While
OASIS-MCT is not modular internally, we propose to con-
ceptually decompose its workflow (following Section 3.2)
into stages such as initialisation, grid remapping, time syn-
chronisation, and data transfer. In practice, the Fortran cou-
pler wraps C adapter functions via ISO_C_BINDING; these
adapters in turn call the OASIS C API and, when required,
register C callbacks that can call back into Fortran routines
also exposed through ISO_C_BINDING. The wrappers are
treated as verification points where we attach explicit ACSL
contracts. Since the EC-Earth 3.1 bug was due to the ocean



PROPL ’25, October 12–18, 2025, Singapore, Singapore Chinmayi Baramashetru and Dominic Orchard

model using an uninitialised array to receive data from the
land model, we add ACSL contracts to the modules to catch
this in Listing 2. The code only shows the specification and
not any surrounding additional code instrumentation. Here,
remap_field abstracts interpolation and grid remapping in
OASIS-MCT, with precomputed weights from namcouple
and internal oasis_get and oasis_put calls) and the func-
tion route_field represents the final data transfer to the
receiving model.
To address the uninitialised array bug, we introduce two

reusable predicates. The first, bounds, to express that every
array element lies in [0,MAX_VALUE]. This predicate also
checks for NaN values as they fail ordered comparisons. The
second, not_all_zero, is an existential condition that re-
quires that at least one element of the array is strictly positive.
Similarly, in cases where arrays are only partially overwrit-
ten or padded with zeros, a conservation contract can be
applied to check that the total runoff flux sent by the land
model equals the total received by the ocean model. For sim-
plicity and to avoid additional code instrumentation in the
example, the conservation contract check is omitted from the
listing. The preconditions require (i) correct sizes for source/-
target grids, (ii) valid memory, and (iii) values within physical
bounds. The postconditions guarantee that the outputs also
satisfy the bounds, ensuring that NaN or zero-filled data
cannot pass through unnoticed. The assigns clauses make
data dependencies explicit (e.g., out depends only on field,
sizes, and MAX_VALUE; routed depends only on remapped
and m), avoiding any hidden state. In addition, simple global
invariants (SourceGrid >0, TargetGrid>0, MAX_VALUE ≥
0) ensure valid assumptions globally.
Since these C wrappers call external Fortran code, post-

conditions cannot be proved using Frama-C’s WP plugin. We
leverage the E-ACSL plugin to enforce the same contracts
at runtime, detecting violations when they occur. One rel-
evant comparison is with memory sanitiser tools such as
Memcheck [26] and AddressSanitizer (ASAN) [25], which
are widely used to detect memory errors. However, both are
limited to low-level memory safety, and cannot express or
enforce semantic correctness conditions across model inter-
faces. In contrast, E-ACSL enables runtime verification not
only of pointer validity and array bounds, but also of user-
defined conditions such as value ranges, conservation, or
coupling synchronisation. While this may cause higher run-
time overhead than ASAN depending on the contract com-
plexity, E-ACSL integrates with Frama-C, enabling domain-
specific correctness properties that cannot be checked by
low-level tools. This hybrid verification strategy combines
interface properties such as pointer validity, array bounds,
and declared data dependencies at the C layer with runtime
monitoring for black-box native code, providing complemen-
tary guarantees. Unlike reactive techniques such as output
comparison, ensemble testing, or scattered runtime checks
inside individual models, centralised contracts in the coupler

can enforce cross-component checks and are auditable in a
single location in code.

4 Conclusion
Formal verification techniques have helped safety-critical
domains such as avionics [28] but remain largely unexplored
in climate modelling. Prior work focuses on component-level
validation via testing [6], numerical verification [15], model
checking [3, 5], and the software architecture of couplers [2],
but no work addresses cross-component verification at the
level of couplers. We aim to bridge this gap, showing how
lightweight formal methods can employ post-hoc verifica-
tion, ensure safety guarantees, and support interoperability
across coupler components. We extract coupler design prin-
ciples and propose verifiable modules using ACSL contracts,
verified with Frama-C and E-ACSL. We plan to prototype
this approach by wrapping and verifying the OASIS-MCT
coupler and retrofitting our strategy to existing couplers.
This technique could also be applied in the construction
of a new verified coupler, and even in couplers written in
dynamic languages such as Julia or Python, which offer run-
time flexibility and could benefit from lightweight contract
verification. By introducing formal interface contracts into
coupler design, we move towards auditable coupled models,
systems whose correctness is not only empirically validated
but also formally verifiable.

Acknowledgments
Thank you to the reviewers for their comments which helped
to improve this paper in its final form. This research received
support through Schmidt Sciences, LLC. Thank you also to
the Institute of Computing for Climate Science for enabling
this work through its supportive research environment.

References
[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,

Martin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, et al. 2005. The KeY tool: integrating
object oriented design and formal verification. Software & Systems
Modeling 4 (2005), 32–54. https://doi.org/10.1007/s10270-004-0058-x

[2] Kaitlin Alexander and Stephen M Easterbrook. 2015. The software
architecture of climate models: a graphical comparison of CMIP5 and
EMICAR5 configurations. Geoscientific Model Development 8, 4 (2015),
1221–1232. https://doi.org/10.5194/gmd-8-1221-2015

[3] Alper Altuntas, Allison H Baker, John Baugh, Ganesh Gopalakrishnan,
and Stephen Siegel. 2025. Specification and Verification for Climate
Modeling: Formalization Leading to Impactful Tooling. https://doi.
org/10.4018/9781599042190.ch005 VSS 2025: International Workshop
on Verification of Scientific Software.

[4] John Gilbert Presslie Barnes. 2003. High integrity software: the spark
approach to safety and security: sample chapters. Pearson Education.

[5] John Baugh and Alper Altuntas. 2018. Formal methods and finite
element analysis of hurricane storm surge: A case study in software
verification. Science of Computer Programming 158 (2018), 100–121.
https://doi.org/10.1016/j.scico.2017.08.012

[6] Tom Clune, Natalie Patten, Ben Auer, and Arlindo da Silva. 2023. Com-
ponent Level Testing in a Hierarchical Architecture. InWorkshop on

https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.5194/gmd-8-1221-2015
https://doi.org/10.4018/9781599042190.ch005
https://doi.org/10.4018/9781599042190.ch005
https://doi.org/10.1016/j.scico.2017.08.012


Towards Modelling and Verification of Coupler Behaviour in Climate Models PROPL ’25, October 12–18, 2025, Singapore, Singapore

Correctness and Reproducibility for Climate and Weather Software.
[7] Mistral Contrastin, Matthew Danish, Dominic Orchard, and Andrew

Rice. 2016. Lightning Talk: Supporting Software Sustainability with
Lightweight Specifications. In Proceedings of the Fourth Workshop on
Sustainable Software for Science: Practice and Experiences (WSSSPE4),
University of Manchester, Manchester, UK, September 12-14, Vol. 1686.
CEUR Workshop Proceedings.

[8] Anthony Craig, Sophie Valcke, and Laure Coquart. 2017. Development
and performance of a new version of the OASIS coupler, OASIS3-
MCT_3. 0. Geoscientific Model Development 10, 9 (2017), 3297–3308.
https://doi.org/10.5194/gmd-10-3297-2017

[9] Anthony P Craig, Robert Jacob, Brian Kauffman, Tom Bettge, Jay Lar-
son, Everest Ong, Chris Ding, and Yun He. 2005. CPL6: The new
extensible, high performance parallel coupler for the Community Cli-
mate System Model. The International Journal of High Performance
Computing Applications 19, 3 (2005), 309–327. https://doi.org/10.1177/
1094342005056117

[10] Anthony P Craig, Mariana Vertenstein, and Robert Jacob. 2012. A
new flexible coupler for earth system modeling developed for CCSM4
and CESM1. The International Journal of High Performance Com-
puting Applications 26, 1 (2012), 31–42. https://doi.org/10.1177/
1094342011428141

[11] Robert E Dickinson, Stephen E Zebiak, Jeffrey L Anderson, Maurice L
Blackmon, Cecelia De Luca, Timothy F Hogan, Mark Iredell, Ming Ji,
Ricky B Rood, Max J Suarez, et al. 2002. How can we advance our
weather and climate models as a community? Bulletin of the American
Meteorological Society 83, 3 (2002), 431–436. https://doi.org/10.1175/
1520-0477(2002)083<0431:hcwaow>2.3.co;2

[12] Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Al-
mut Arneth, Thomas Arsouze, Tommi Bergmann, Raffaele Bernadello,
Souhail Bousetta, Louis-Philippe Caron, et al. 2021. The EC-earth3
Earth system model for the climate model intercomparison project
6. Geoscientific Model Development Discussions 2021 (2021), 1–90.
https://doi.org/10.5194/gmd-15-2973-2022

[13] John Hatcliff, Gary T Leavens, K Rustan M Leino, Peter Müller, and
Matthew Parkinson. 2012. Behavioral interface specification languages.
ACM Computing Surveys (CSUR) 44, 3 (2012), 1–58. https://doi.org/10.
1145/2187671.2187678

[14] Chris Hill, Cecelia DeLuca, Max Suarez, ARLINDO Da Silva, et al. 2004.
The architecture of the Earth SystemModeling Framework. Computing
in Science & Engineering 6, 1 (2004), 18–28. https://doi.org/10.1109/
MCISE.2004.1255817

[15] Franjo Ivančić, Malay K Ganai, Sriram Sankaranarayanan, and Aarti
Gupta. 2010. Numerical stability analysis of floating-point computa-
tions using software model checking. In Eighth ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE
2010). IEEE, 49–58. https://doi.org/10.1109/memcod.2010.5558622

[16] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2015. Frama-C: A software analysis perspective.
Formal aspects of computing 27, 3 (2015), 573–609. https://doi.org/10.
1007/s00165-014-0326-7

[17] Jay Larson, Robert Jacob, and Everest Ong. 2005. The model coupling
toolkit: A new Fortran90 toolkit for building multiphysics parallel
coupled models. The International Journal of High Performance Com-
puting Applications 19, 3 (2005), 277–292. https://doi.org/10.1177/
1094342005056115

[18] Li Liu, G Yang, B Wang, C Zhang, R Li, Z Zhang, Y Ji, and L Wang.
2014. C-Coupler1: A Chinese community coupler for Earth system
modeling. Geoscientific Model Development 7, 5 (2014), 2281–2302.
https://doi.org/10.5194/gmd-7-2281-2014

[19] Li Liu, Cheng Zhang, Ruizhe Li, Bin Wang, and Guangwen Yang. 2018.
C-Coupler2: a flexible and user-friendly community coupler for model
coupling and nesting. Geoscientific Model Development 11, 9 (2018),
3557–3586. https://doi.org/10.5194/gmd-11-3557-2018

[20] François Massonnet, Martin Ménégoz, Mario Acosta, Xavier Yepes-
Arbós, Eleftheria Exarchou, and Francisco J Doblas-Reyes. 2020. Repli-
cability of the EC-Earth3 Earth system model under a change in com-
puting environment. Geoscientific Model Development 13, 3 (2020),
1165–1178. https://doi.org/10.5194/gmd-13-1165-2020

[21] Bertrand Meyer. 2002. Applying’design by contract’. Computer 25, 10
(2002), 40–51. https://doi.org/10.1109/2.161279

[22] William L Oberkampf and Christopher J Roy. 2010. Verification and
validation in scientific computing. Cambridge university press.

[23] Dominic Orchard and Andrew Rice. 2014. A computational science
agenda for programming language research. Procedia Computer Science
29 (2014), 713–727. https://doi.org/10.1016/j.procs.2014.05.064

[24] John Rushby. 1993. Formal methods and the certification of critical
systems. Vol. 37. SRI International, Computer Science Laboratory.
https://doi.org/10.1007/978-1-4471-0921-1_1

[25] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. {AddressSanitizer}: A fast address sanity
checker. In 2012 USENIX annual technical conference (USENIX ATC
12). 309–318. https://www.usenix.org/conference/atc12/technical-
sessions/presentation/serebryany

[26] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect
Undefined Value Errors with Bit-Precision. InUSENIXAnnual Technical
Conference, General Track. 17–30.

[27] Julien Signoles, Nikolai Kosmatov, and Kostyantyn Vorobyov. 2017. E-
ACSL, a runtime verification tool for safety and security of C programs
(tool paper). In RV-CuBES 2017-International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime
Verification Tools. https://doi.org/10.29007/fpdh

[28] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. 2009.
Formal verification of avionics software products. In International
symposium on formal methods. Springer, 532–546. https://doi.org/10.
1007/978-3-642-05089-3_34

[29] Clemens Szyperski, Dominik Gruntz, and StephanMurer. 2002. Compo-
nent software: beyond object-oriented programming. Pearson Education.
https://doi.org/10.5381/jot.2005.4.3.a3

[30] S Valcke. 2013. The OASIS3 coupler: A European climate modelling
community software. Geoscientific Model Development 6, 2 (2013),
373–388. https://doi.org/10.5194/gmd-6-373-2013

[31] Sophie Valcke, Tony Craig, and Laure Coquart. 2013. OASIS3-MCT
user guide, oasis3-mct 2.0. CERFACS/CNRS SUC URA 1875 (2013).

[32] Sophie Valcke, René Redler, and Reinhard Budich. 2011. Earth system
modelling-volume 3: Coupling software and strategies. Springer Science
& Business Media. https://doi.org/10.1007/978-3-642-23360-9

https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1177/1094342005056117
https://doi.org/10.1177/1094342005056117
https://doi.org/10.1177/1094342011428141
https://doi.org/10.1177/1094342011428141
https://doi.org/10.1175/1520-0477(2002)083<0431:hcwaow>2.3.co;2
https://doi.org/10.1175/1520-0477(2002)083<0431:hcwaow>2.3.co;2
https://doi.org/10.5194/gmd-15-2973-2022
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1145/2187671.2187678
https://doi.org/10.1109/MCISE.2004.1255817
https://doi.org/10.1109/MCISE.2004.1255817
https://doi.org/10.1109/memcod.2010.5558622
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1177/1094342005056115
https://doi.org/10.1177/1094342005056115
https://doi.org/10.5194/gmd-7-2281-2014
https://doi.org/10.5194/gmd-11-3557-2018
https://doi.org/10.5194/gmd-13-1165-2020
https://doi.org/10.1109/2.161279
https://doi.org/10.1016/j.procs.2014.05.064
https://doi.org/10.1007/978-1-4471-0921-1_1
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.29007/fpdh
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.1007/978-3-642-05089-3_34
https://doi.org/10.5381/jot.2005.4.3.a3
https://doi.org/10.5194/gmd-6-373-2013
https://doi.org/10.1007/978-3-642-23360-9

	Abstract
	1 Introduction
	2 Coupled Models and Couplers
	3 Towards Verifiable Coupler Design
	3.1 Major Couplers in Earth System Models
	3.2 Coupler Subsystems and Functional Modules
	3.3 Example Formal Specification

	4 Conclusion
	Acknowledgments
	References

